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Abstract

A package of programs has been developed for efficient restrained
least-squares refinement of macromolecular crystal structures. The
package has been designed to be as flexible and general purpose as
possible. The process of refinement is divided into basic units and an
independent computer program handles each task. Each functional
unit communicates with other programs in the package by way of files
of well defined format. To modify or replace any program, the user
need only understand the function of that particular element. Stere-
ochemical restraints are defined in a general way that can be applied
to proteins, nucleic acids, prosthetic groups, solvent atoms and so
on. Guide values for bond lengths and bond angles are specified in
a straightforward direct manner. Designated groups of atoms can be
held constant or constrained to behave as a rigid body during refine-
ment. In order to make the package as efficient as possible, the fast
Fourier transform algorithm is used for all the crystallographic trans-
formations. To highlight potential errors in the refined structure the
user can list those atoms that have the worst bond lengths and an-
gles, or have the largest positional, temperature-factor or occupancy
gradients. It is also possible to check that protein and solvent atoms
do not sterically clash with symmetry-related neighbors. Applica-
tions of the program package to a bacteriochlorophyll-containing pro-
tein, thermolysin-inhibitor complexes and mutants of bacteriophage
T4 lysozyme are described.

1 Introduction

There are a number of potential difficulties with the refinement of macro-
molecular structures including the unfavorable ration of observations to pa-
rameters, the magnitude of the computational requirements, and deficiencies
in the starting model ranging from small errors in the coordinates to gross
errors arising from misinterpretation of the electron density map. These diffi-
culties have led to the development of different refinement strategies, each of
which has its own advantages and disadvantages (e.g. Diamond, 1971; Wa-
tenpaugh, Sieker, Herriott & Jensen, 1973; Freer, Alden, Carter & Kraut,
1975; Sussman, Holbrook, Church & Kim, 1977; Jack & Levitt, 1978; Kon-
nert & Hendrickson, 1980; Agarwal, 1978; Jones & Liljas, 1984). In order
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to increase the number of observations it is usual to include knowledge of
the stereochemistry of the protein. Bond distances, bond angles, planarity
and limits on the approach distances of non-bonded atoms can all be speci-
fied. It can also be profitable to incorporate additional information, as in the
co-refinement of bovine pancreatic trypsin inhibitor with X-ray and neutron
data (Wlodawer & Hendrickson, 1982). If other data are available, such as
independent phase information from isomorphous replacement, anomalous
scattering, or phase information from molecular replacement, it might be
desirable to include this information as well.

The package of programs described uses the principle of restrained least-
squares refinement. The package is designed to be as general purpose as
possible. Stereochemistry, for example is defined in a general way that can be
applied to proteins, nucleic acids, prosthetic groups, solvent atoms and so on.
The package has been made as efficient as possible by using the fast Fourier
transform algorithm to carry out all the crystallographic transformations.

One limitation of many refinement programs is their inflexibility; portions
cannot be replaced nor new functions added without extensive modification
of the existing code. This limits the ability of the user to experiment with
different refinement strategies. In order to modify the refinement program
one must understand the data structure and algorithms of the entire program.
The refinement package described here was designed to avoid this limitation.
The process of refinement is broken down into basic units and an independent
computer program handles each task. Each functional unit communicates
with the other programs in the package by way of files of well defined format.
To modify or replace any program only requires that the user understand the
function of that program; the rest of the programs will function as before.
In this manner calculations which can be optimized by space-group-specific
algorithms (such as fast Fourier transforms) can be calculated differently
for different crystal structures by a simple substitution of the appropriate
program.

2 Feature and organization

The package of computer programs was designed to meet five specific objec-
tives which will be briefly discussed below.

1. It should be possible to replace existing functions or add new functions
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without modifying existing code.

2. The programs should have a common mechanism for reading data.

3. It should be easy to define standard geometry for new and unusual
chemical groups.

4. It should be possible to constrain specified groups of atoms to behave
as rigid bodies or to be held constant during refinement.

5. The program should provide tools to aid the user in the detection of
errors in the model that are beyond the ability of the refinement package
to correct.

Because of the ability to replace easily the programs performing specific
calculations, the most efficient algorithms for a particular problem can be
used. This feature has resulted in a package with great flexibility and speed.

2.1 Overall organization

The need to partition a refinement program into independent functional units
was mentioned in the Introduction and has shaped the overall organization
and structure of the package. The different function that are minimized in
the refinement are treated as separate ‘terms’ where each term is defined on
the basis of the calculations required to evaluate the term and its gradient.
Most commonly, two terms are included: a crystallographic and a stereo-
chemical term. The programs required to calculate a term and its gradient
are collectively referred to as a ‘module’. The overall refinement package
consists of the control program plus a variable number of modules. The
control program combines the information presented by all the modules to
determine the direction in which to shift the parameters of the model, and,
eventually, to determine the magnitude of the shift. This program ‘knows’
nothing about the specifics of the terms that are handled by the various
modules. The stereochemical module is implemented as a single program.
Because it involves several Fourier transforms, the crystallographic module is
broken up into five different programs. This fractionation allows appropriate
space-group-specific fast Fourier transform (FFT) programs to be used for
different projects.
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2.2 Data input and data transfer

Because of the number and independence of the programs in the package it is
very desirable that the input format for all programs be the same. Although
some data file are created by the computer and others by the user, the style of
input has been designed with emphasis on the benefit of the user. All input
is token based. The input is read in free format, each token being separated
from the next by a delimiter such as a space or a comma (see Tables 1 and
2 for examples). The first token on the card is the keyword. Keywords fall
into two classes: data keywords and command keywords. The order of data
cards is unimportant. When a command card is encountered, the required
operation is performed on whatever data have been read to that point. Input
and output is handled by a set of library routines which perform the basic
operations of reading in cards, separating tokens, and building numbers from
particular tokens.

A related objective was to allow the constituent programs to be easy to
write and understand. Sets of common routines have been placed in libraries
that are used by most of the programs. These libraries contain routines that
process data cards and build the internal data structures. Also there are
other routines that locate required information within the data structures.
By not having to rewrite these routines one can implement a new program in
a very short time and, by having a common internal structure, the existing
programs can be understood more easily. On the other hand, although these
library routines are available, they do not have to be used when one wishes
to add a new program to the refinement package.

2.3 Geometry definition

Because one often needs to include unusual inhibitors or cofactors in the
refinement, it is very desirable that the definition of geometry should be gen-
eral. Often the structures of these small molecules have not been determined
and their ‘ideal’ geometry must be constructed from the fragments whose
structures are known. In the present package, standard geometry is defined
by breaking the structural model into components, such as amino acids, nu-
cleotides or cofactors. The geometry restrains are then defined in a general
way for each component and for the linkages between components.

There are two ways in which stereochemical information can be incorpo-
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Table 1: Definition of the general data cards

These are the definitions for the cards used to define the standard geometry for a
molecular model. Each atom card contains the name, type and coordinates of the atom
as well as the names of the residue and chain in which it resides. Each chain has its
type defined on a CHAIN card. The sequence and connectivity of that type of chain is
defined on several RESIDUE cards and the restraints associated with each residue type
and linkage type are defined on GEOMETRY cards. Table 2 gives a specific example.

The nomenclature is :

<name> is a word or number
A|B means A or B
{A} means A is repeated 0 or more times
“|” means that the | is to be taken literally

Data Cards:

<Atom card> :==
<Atom Keyword> <Atom type> <Atom parameters>

<Atom name> <Residue name> <Chain name>

<Chain card> :==
CHAIN <Chain name> <Chain type>

{<Chain name>“|”<Residue name> <Linkage type>}

<Residue card> :==
RESIDUE <Chain name>“|”<Residue name> <Residue type>

{<Residue name> <Linkage type>}

<Geometry card> :==
GEOMETRY <Cluster type> <Restraint type> <Standard value>

<Value’s sigma> <Atom name> {<Atom name>}

where

<Atom keyword> :== ATOM | ATOMC | ATOMG
<Cluster type> :== <Residue type> | <Linkage type>
<Restraint type> :== BOND | ANGLE | TORSION

TRIGONAL | PLANE | CHIRAL
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Table 2: Definition of the structure of Cro repressor

First in the example comes the CHAIN cards which define that all four chains O, A, B,
and C are of type CRO. Next come the cards (not all of which are shown) which define the
meaning of type CRO. A type is given for each amino acid in CRO along with the targets
and types of any linkages between this residue and other residues. The residue types and
linkage types are defined by obtaining the restraints associated with each through the
geometry restraint library. The GEOMETRY cards are representative examples from the
deposited restraint library.1

CHAIN O CRO
CHAIN A CRO
CHAIN B CRO
CHAIN C CRO

RESIDUE CRO|1 MET 2 PEPTIDE
RESIDUE CRO|2 GLU 3 PEPTIDE
RESIDUE CRO|3 GLN 4 PEPTIDE
RESIDUE CRO|4 ARG 5 PEPTIDE
RESIDUE CRO|5 ILE 6 PEPTIDE

GEOMETRY PEPTIDE BOND 1.45 0.02 N, CA
GEOMETRY PEPTIDE ANGLE 112 3 N, CA, C
GEOMETRY PEPTIDE PLANE 5 0.02 C, CA, O,+N,+CA
GEOMETRY PEPTIDE TORS 2180 10 CA,C,+N,+CA
GEOMETRY MET BOND 1.81 0.02 CG,SD
GEOMETRY MET ANGLE 100.4 3 CG,SD,CE
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rated into the refinement process; the information can be added as additional
observations (restraints) (cf. Hermans & McQueen, 1974; Konnert & Hen-
drickson, 1980) or the model can be parameterized (constrained) in such a
way that the stereochemistry is always ‘ideal’ (cf. Diamond, 1971; Warme,
Gō & Scheraga, 1972). Although the use of constraints rather than re-
straints does result in a more favorable ratio of observations or parameters,
we have chose the latter approach. There are several reasons for this, the
first being that a restrained model is physically more realistic than a con-
strained one, as constraints are usually implemented (e.g. Ten Eyck, Weaver
& Matthews, 1976). A second reason is that different types of restraint can
be individually weighted. This allows the user to put a smaller weight on ge-
ometric restraints for which the ‘ideal’ values are uncertain. Another reason
is that the significance of deviations from ideality can be evaluated by calcu-
lating the standard deviation of all the observations within the same class of
restraint. At the same time the library of standard values can be tested for
accuracy. If there is an error, then there will be a systematic difference be-
tween the library value and the value obtained from the refined model. (The
‘stereochemistry’ program in the refinement package will perform both the
above tests.) Finally, the use of restraints allows the stereochemical infor-
mation to be incorporated into the refinement in a manner formally similar
to the incorporation of the crystallographic observations (see below). This
allows simpler and more efficient code.

2.4 Rigid-body refinement

It is often desirable to have the option of holding portions of the structure
fixed, or constraining a group to move as a rigid body (e.g. Sussman, Hol-
brook, Church & Kim, 1977). Because these options do not depend on the
nature of the function being minimized they have been implemented in the
control program.

The control program also allows one to limit the range of values that
the temperature factors and occupancies can assume and, in addition, to
constrain a group of atoms to have the same temperature factor or occupancy
(e.g. to allow for partial occupancy by an inhibitor).
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2.5 Detection of errors in the model

Finally, in order to highlight potential errors in the current model of the
structure, each module can list those atoms that most seriously violate the
restraints of the refinement. The stereochemistry module lists, for each class
of geometrical restraint, the worst discrepancies between the model and the
‘ideal’ values. Similarly, the crystallographic module can list those atoms
with the largest positional, temperature-factor or occupancy gradient. Ex-
perience has shown that these lists are particularly helpful in pointing out
areas of the model that are likely to be in error and may need to be corrected
manually.

3 Theoretical background

The goal is to minimize a suitable function of the observations in terms of a
structural model specified by variables such as coordinates, thermal factors
and occupancies. The function used in least-squares refinement is

M =
∑
j

W (j)[Qo(j)−Qc(j,p)]2, (1)

where Qo(j) is the experimental value for the observation j, Qc(j,p) is the
corresponding value calculated from the coordinate and thermal parame-
ters p that specify the structural model, and W (j) is the desired weighting
function. The sum in (1) is over all observations, but can be separated into
different terms based, for example, on the crystallographic observations s and
the stereochemical observations b (see Appendix B for additional details):

M =
∑
s

W (s)[Qo(s)−Qc(s,p)]2 +
∑

b

W (b)[Qo(b)−Qc(b,p)]2 (2)

More terms could be added if other classes of observation were available. The
gradient of M can also be separated into similar terms. This means that the
calculations for the crystallographic term can be kept completely separate
from calculations for the other terms.

The computational problem is to determine a set of parameters which
minimized M . There exist function minimization methods which use no
derivatives, which use only first derivatives, and which use second derivatives,
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in order of increasing power of convergence and increasing computational
cost. In the present case there are several reasons for using first-derivative
methods.

1. The radius of convergence of first-derivative methods is larger than that
of second-derivative methods, and in these problems one often starts
far from the minimum.

2. The computational cost of first-derivative methods is proportional to
N (the number of parameters) instead of N2. For large N this is very
important.

3. Implementation of parameter constraints for holding variables constant,
or for requiring variables to behave as rigid groups, is particularly sim-
ply for first-derivative methods (see below).

In order to hold a parameter constant, one simply sets the derivative of
this parameter equal to zero before calculating the parameter shifts. This
prevents the corresponding parameters from changing. To treat a set of
atoms xi as a rigid group one redefines these atoms in terms of a chosen
origin xo and three orientation parameters α, i.e.

xi = g(xo, α). (3)

Similarly, the residual M is redefined as

M(xi) = f(xo, α). (4)

Then by the chain rule

∂M/∂xi = (∂f/∂xo)(∂xo/∂xi) + (∂f/∂α)(∂α/∂xi), (5)

which gives an overdetermined system of equations for the derivatives of
f . This system of equation can be solved by least squares and the solution
used to calculate values of ∂M/∂xi consistent with the rigid-body constraint.
This had the virtue of always operating in the original parameter space, but
has the fault that nonlinearities can distort the rigid group. A more correct
method is to perform the parameter shift steps in the (xo, α) space and
expand to the original space for all other calculations.
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First-derivative methods all use the same general strategy, namely calcu-
lation of the shift direction followed by a line search for a minimum in the
chosen direction. The present package uses the conjugate gradient method
(Fletcher & Reeves, 1964). In this procedure the changes in the gradient vec-
tor from cycle to cycle are used to approximate the second derivative without
actually having to compute this quantity.

By using the method of Agarwal (1978) the amount of computer time re-
quired to calculate the gradient of the crystallographic term is only slightly
longer than the calculation of a FFT of the structure. The time to calculate
the gradient of the stereochemical term is, in comparison, miniscule. The
stereochemical and crystallographic gradients are combined with the shift
vector of the previous cycle to give the direction (but not the magnitude)
of the shift for each parameter. The search along the shift vector for the
optimum shift magnitude requires at least three calculations of M , i.e. three
FFT’s plus some additional calculations. Thus the overall computer time
required for a single cycle of refinement is approximately four times that
required for one FFT. It is apparent that space-group-specific FFT’s can
substantially reduce the required computer time per cycle. Included in the
refinement package is a program (to be described elsewhere) that will calcu-
late space-group-specific FFT’s for most noncentrosymmetric space groups.

4 Crystallographic term

The function that we have chosen to minimize is

M =
∑
s

W (s)[k|Fo(s)| − |Fc(s,p)|]2, (6)

where Fo and Fc are the observed and calculated structure factors and k is
a scale factor. Note that no exponential factor is applied to the Fc’s. This
will force the thermal factors of the individual atoms to include any ‘overall’
mismatch between the observed and calculated data sets.

At the beginning of each cycle of refinement the scale factor k is deter-
mined by minimizing

M(k,B) =
∑
s

W (s)[k|Fo(s)| − exp(−Bss/4)|Fc(s,p)|]2 (7)
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where s = sin θ/λ and Fc(s) is treated as a constant. Equation (7) includes
an overall thermal factor B, which is necessary to allow for an initial overall
discrepancy between the Fo’s and Fc’s. Although both k and B are treated
as variables in the minimization of (7), only k is substituted in (6). As the
refinement proceeds, the discrepancy represented by B is absorbed within
the thermal factors of the individual atoms and, during successive cycles,
rapidly approaches zero.

Each module of the refinement package is able to calculate both the value
and the gradient of its term. For the crystallographic term the structure
factors are calculated by a space-group-specific FFT (Ten Eyck, 1977). The
gradients are calculated by a modified version of the procedure outlined by
Agarwal (1978). This modified version was devised by A. Lifchitz (Agarwal,
Lifchitz & Dodson, 1981; Isaacs, 1982) and is described in detail in Ap-
pendix A. In outline, the procedure is as follows. An (Fo − Fc) map is
calculated for the molecular volume. For each parameter in the model a con-
volution, evaluated at the atomic position, is calculated between this map
and the derivative of the calculated atomic electron density function for the
atom involved. Because the extent of the electron cloud of a single atom is
small, the calculation of this convolution is rapid. Usually the calculation of
the convolutions takes about a quarter of the time required to calculate the
difference map.

5 Stereochemical term

The major goal in the implementation of this part of the package was to make
it as easy as possible for the user to specify ‘ideal’ bond lengths and angles.
Stereochemical restraints are usually introduced either as energy terms (e.g.
Jack & Levitt, 1978) or by expressing all types of stereochemical restraints
as distances (e.g. Ten Eyck, Weaver & Matthews, 1976; Dodson, Isaacs &
Rollett, 1976; Konnert & Hendrickson, 1980). There are many drawbacks to
both approaches. In the first case it may be difficult to obtain reliable energy
parameters, expecially for novel chemical groups. Also the introduction of an
inappropriate energy term might mask interesting and unexpected features
of the structure. On the other hand, if one attempts to define standard
geometry in terms of interatomic distances, then such distances must be
determined indirectly from a known example with ideal geometry. There
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are obvious difficulties if no known structure exists for the chemical group
in question. In addition, restraints on interatomic distances as a means of
specifying bond angles can lead to very distorted planarity of trigonal atoms
and aromatic rings.

The method used in this package is to include stereochemical restraints
as ‘observations’ but to specify such restraints in a form that is most conve-
nient for the user, i.e. as bond lengths, bond angles and so on. There are six
classes of stereochemical information with which the structural model can
be restrained; bond lengths, bond angles, torsion angles, trigonal planarity,
general planarity and contacts between non-bonded atoms. (Chirality is
monitored but not restrained because the chirality function is discontinuous
and has no derivatives.) Because the program deals directly with the stere-
ochemical information, some of the derivatives are difficult to derive, and,
for the planarity restraints, certain assumptions were used to simplify the
calculation. The derivations of the gradients for the stereochemical term are
given in Appendix B.

To apply the stereochemical restrains the contents of the asymmetric unit
are broken up into different hierarchical units. Each unit can be broken up
into small subgroups of atoms in whatever manner is appropriate for the
problem at hand. for example, consider the crystal structure of Cro repres-
sor (Anderson, Ohlendorf, Takeda & Matthews, 1981). The asymmetric unit
consists of four chemically identical polypeptides, each with 66 amino acids.
The first hierarchical unit is defined by CHAIN cards. In this example we
specify that there are four chains, named O, A, B and C, each chain being
of type ‘CRO’ (see Table 2 for representative data cards). The makeup of
a ‘CRO’ chain is then defined by RESIDUE cards. A series of such cards
is used to define the sequence of units in the chain (in this case, amino-acid
residues) and the types of linkages between successive units (in this case
peptide bonds). In this example, the units of the chain are named GLY,
ALA, THR, . . . etc., and the linkages PEPTIDE, SS, . . . etc. The geometric
restraints associated with each unit or linkage type are defined with GEOM-
ETRY cards. Each restraint (bond length, bond angle, torsion angle, plane,
. . . ) is specified in a straightforward manner. There is no particular order
in which these cards must be given and they can be arranged into different
files in any desired manner.

The enumeration of all the stereochemical restraints in this manner may
seem to be time consuming, but most of the files, once created, can be trans-

13



ferred from one application to another. Also it is easy to inspect and alter the
ideal values of the restraints since they appear in the program in the same
form as in everyday usage. A table which gives the library of ‘ideal’ stereo-
chemistry that has been adopted in this laboratory, primarily from Bowen,
Donohue, Jenkin, Kennard, Wheatley & Whiffen (1958) and Vijayan (1976),
has been deposited.2

Interactions between non-bonded atoms cannot be defined in the manner
described above because one does not know in advance which atoms may
approach each other. Close contacts are discovered by generating a list of
all pairs of atoms which are closer to each other than specified values and
discarding from consideration any pairs which are bonded, or and involved
in 1-3 or 1-4 type contacts. The 1-3 and 1-4 contacts are better dealt with as
bond angles and torsion angles. The standard value for the closest distance
allowed before any action is taken is defined in terms of the elemental types
of the two atoms. This method of definition allows a closer approach be-
tween atoms which have the potential of forming a hydrogen bond or a salt
bridge than the distance allowed for atoms in van der Waals contact. The
program will prevent non-bonded atoms from moving too close together but
no attractive force is applied to atoms that are beyond the specified approach
distance.

One novel feature of the program is the ability to avoid steric clashes be-
tween adjacent molecules in the crystal. By specifying the appropriate sym-
metry operators the list of potential non-bonded contacts can be extended
to include molecules that surround the reference structure. This procedure
is particularly useful in avoiding ‘duplicate’ or ‘overlapping’ solvent atoms.

The program that implements the stereochemistry module has a number
of additional features. It can list the worst discrepancies in the model for each
type of geometry restraint and provide overall statistics for each class. Also
it can produce a table which compares the ‘ideal’ value of each restraint with
the average value in the present model. This table is useful when looking for
potential errors in the geometry library.

2The geometry restraint library has been deposited with the British Library Document
Supply Centre as Supplementary Publication No. SUP 43532 (8 pp.). Copies may be ob-
tained through The Executive Secretary, International Union of Crystallography, 5 Abbey
Square, Chester CH1 2HU, England.
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6 The control program

The control program has two major functions: (1) to determine the overall
direction of shift for each parameter, and (2) to determine the optimum
magnitude (fraction of the shift) to be applied along the shift vector.

In an initial cycle of refinement, the overall gradient is obtained by com-
bining the contributions from the crystallographic, stereochemical and any
other terms and the direction of shift is obtained by the method of steepest
descent. For second and subsequent cycles of refinement one can combine the
overall gradient with the direction of the shift used in the previous cycle and
determine the new shift direction by the conjugate-gradient technique. The
control program also determines the optimal shift magnitude by searching
along the shift direction as described previously.

A number of options exist for modifying the shift vector before the shift
is applied. One can combine all or part of the structure into units within
which all the atoms are treated identically (e.g. Table 3). It the atoms
within an amino acid are combined, the temperature-factor shift applied to
each atom will be the average of the individual shifts. Positional parameters
can be treated as though the group were a rigid body. This is done by a
least-squares fitting procedure. It is also possible to place upper and lower
limits on the values of the thermal factors and the occupancies.

7 Applications

The package of programs has been in productive use (while being developed)
for four years. It had been applied to a number of different refinement tasks
in this laboratory and elsewhere. Up to the present it has only been used on
VAX/VMS systems. In this section we briefly review some of the applica-
tions.

7.1 Bacteriochlorophyll a protein

The first extensive use of the package was in the refinement of the bacteri-
ochlorophyll a protein (Tronrud, Schmid & Matthews, 1986). This molecule
(molecular weight 150 000 daltons) consists of three identical subunits re-
lated by a threefold axis of symmetry. Each of the subunits consists of a

15



Table 3: Examples of parameter editing cards

1. Specification of rigid-body refinement

COMBINE XYZ 360 - 361
COMBINE XYZ 362 - 363
COMBINE XYZ 364 - 365
COMBINE XYZ 366 - 367
COMBINE XYZ 367 - 369
COMBINE XYZ 370 - 371
COMBINE XYZ 372 - 373

2. Refinement of the occupancy of a bound inhibitor

FIX OCC 1 - COOH
FIX OCC SOL1
FIX OCC ZINC:ZINC
FIX OCC CAL1:CAL
FIX OCC CAL2:CAL
FIX OCC CAL3:CAL
FIX OCC CAL4:CAL
COMBINE OCC INHIBITOR
FIX B
FIX XYZ

Part (1) shows the cards required to command the control program to treat the seven
bacteriochlorophyll a molecules as seven rigid bodies. Each molecule contains two residues:
the ring and the phytol tail. The first card is read as ‘combine the positional parameters for
all residues between residue 360 and 361’. The operation ‘all residues between’ is defined
as taking the first residue and then following the linkage definitions in the RESIDUE cards
including all residues until the last residue is found.

Part (2) shows the cards required to refine a single occupancy parameter for an inhibitor
of the protein thermolysin. The first card fixed the occupancy of all of the protein atoms.
COOH is the residue name used in this project for the extra oxygen at the carboxyl
terminus. The next card fixes the occupancy of all of the solvent atoms. They are defined
in a single residue to make operations such as this simple. Then the occupancies for the
zinc atom and the four calcium atoms are fixed. Finally the occupancy parameters for the
inhibitor, presumed to be defined as a single residue called INHIBITOR, are combined.
The last two cards simply state that the positional and thermal parameters for all atoms
in the model should be held constant.
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Table 4: Representative refinements of macromolecular structures

Protein Bchl protein Thermolysin∗ Thermolysin† T4 Lysozyme‡

Space group P63 P6122 P6122 P3221
Cell Dimensions

a, b (Å) 111.9 94.1 94.1 61.2
c (Å) 98.6 131.4 131.4 97.4

Number of atoms 3086 2637 2643 1429
Resolution (Å) 1.9 2.3 1.6 1.7
Number of reflections 43 589 13 523 31 627 15 791
Final R value 18.9% 17.4% 17.7% 17.4%
Deviations from ideal values:

bond lengths (Å) 0.02 0.02 0.02 0.02
bond angles (◦) 3.2 2.9 2.8 2.6

Cycles of refinement 120§ 16 28 29
Time per cycle (c.p.u. hours) 2.0 0.8 1.5 0.75

∗Thermolysin:phosphoramidon-inhibitor complexes (Tronrud, Monzingo & Matthews,
1986).

†Complex of thermolysin with carbobenzoxy-GlyP (OH)-L-Leu-L-Leu (Tronrud,
Holden & Matthews, 1987).

‡Bacteriophage T4 lysozyme mutant Thr 157 → Glu (unpublished results of Alber,
Wilson, Matthews et al.).

§Includes cycles used to test and debug various components of the refinement packages.

polypeptide chain of approximately 350 amino acids that enclose seven bac-
teriochlorophyll a molecules (Fenna & Matthews, 1975; Matthews, Fenna,
Bolognesi, Schmid & Olson, 1979). During the course of the refinement the
amino-acid sequence of the protein was not known, but has been reported
subsequently (Daurat-Larroque, Brew & Fenna, 1986).

There were several factors that led to the adoption of the present refine-
ment package. The first was the size of the computation problem. As sum-
marized in Table 4, the asymmetric unit contains 3086 atoms and there are
43 598 reflections to 1.9Å resolution. In addition, the space group (P63) pre-
cludes full use of the crystallographic symmetry to reduce the size of the FFT
calculations. Experience with other projects in the laboratory suggests that
the Hendrickson refinement program (Hendrickson & Konnert, 1980) would
require about 48h of c.p.u. time per refinement cycle on our VAX 11/780
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(subsequent improvements to the Hendrickson program have substantially
improved its computational efficiency). We had also had experience in the
laboratory with EREF (Jack & Levitt, 1978). This program is substantially
faster, on a per cycle basis, than the Hendrickson program. A disadvantage
of using EREF for the refinement of the Bchl protein arose from the presence
of the Bchl rings. Because of the diversity of bond lengths and bond angles
in the seven bacteriochlorophylls, as well as uncertainties in their energetics,
the definition of standard geometry for use by EREF appeared to be quite
difficult.

As discussed previously, the definition of standard geometry in the present
refinement package is very flexible, and readily adaptable to ‘unusual’ situa-
tions. In particular, in the present situation it was not necessary to force all
the conjugated atoms in the Bchl rings to lie in a single plane. Rather, we
divided the conjugated atoms into appropriate sets of overlapping sub-planes
(Tronrud, Schmid & Matthews, 1986). This method of restraint maintained
local planarity, but allowed larger-scale deformations. This procedure led to
the finding that the seven Bchl rings exhibit two distinct classes of bend-
ing, one of which is also observed in the structure of ethyl chlorophillide a
(Tronrud, Schmid & Matthews, 1986). An inappropriate application of re-
straints to the Bchl rings could well have masked this small but significant
effect.

In the initial refinement of the Bchl protein the refinement package used
analytical summations to calculate the gradient of the crystallographic term.
With this method each cycle of refinement required 8h of c.p.u. time on our
VAX 11/780. The present version of the program requires 2.0h for the same
problem.

The general strategy of refinement that we have adopted for the Bchl
and other proteins is first to refine for several cycles with weak geometry
restraints, then to run a few cycles of temperature-factor refinement, then
restore the model to good stereochemistry by refining for several cycles with
strong geometry restraints and finish with several additional cycles of ther-
mal factor refinement. At this stage the resulting difference electron density
map and ‘2Fo − Fc’ map are inspected on the graphics system in the usual
way. Potential problem areas are highlighted by inspecting the lists of worst
bond lengths, bond angles, departures from possible errors in the assumed
amino-acid sequence. In this instance the cycles of refinement followed by
inspection of the model were repeated seven times to achieve the final refined
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structure and ‘X-ray’ amino acid sequence. The overall refinement statistics
are summarized in Table 4.

7.2 Thermolysin-inhibitor complexes

The refinement package has been used extensively to study a number of
complexes of inhibitors with the thermostable endopeptidase thermolysin
(e.g. Holmes, Tronrud & Matthews, 1983; Tronrud, Monzingo & Matthews,
1986). In different instances the resolution ranges from 2.3 to 1.6Å.

Because of the hexagonal space group and the size of the problem (Ta-
ble 2), calculations of structure factors and crystallographic derivatives by
conventional methods is time consuming. [Refinement of the native structure
at 1.6Å resolution by the method of Hendrickson & Konnert (1980) required
21 c.p.u. hours per cycle (Holmes & Matthews, 1982). The present program
package requires 0.7 to 1.5h per cycle, depending on the resolution. The
ability of the present program package to specify the geometry of chemically
unusual inhibitors is an advantage. In addition, it is also possible to define
appropriate stereochemistry for inhibitors that are covalently bonded to the
enzyme (e.g. Holmes, Tronrud & Matthews, 1983).

The refinement of an inhibitor complex normally requires 10 - 30 cycles
of refinement. Little manual intervention is required because thermolysin
normally does not change its conformation very much when inhibitors are
bound. It is, of course, always necessary to monitor the configuration of
the inhibitor during refinement and to check for changes in solvent structure
concomitant with inhibitor binding.

7.3 Bacteriophage T4 mutant structures

As part of a program to determine the roles of individual amino acids in
stabilizing protein structures, the structures of a series of mutant T4 phage
lysozymes have been determined (e.g. Grütter, Weaver, Gray & Matthews,
1983; Alber, Grütter, Gray, Wozniak, Weaver, Chen, Baker & Matthews,
1986). The refinement of each mutant (unpublished results) is in principle
very similar to the refinement of an enzyme-inhibitor complexes. One starts
with the refined structure of the native protein, locally modified to correspond
to the structure of the mutant. In the early stages of the refinement the
stereochemical restraints are kept weak to allow the starting model to relax
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to conform to the diffraction data observed for the mutant structure. When
there appear to be no systematic shifts in the coordinates from one refinement
cycles to the next, the stereochemical restraints are strengthened in order to
enforce the ‘ideal’ geometry. Some representative refinement statistics are
summarized in Table 4. Experience with refining these mutant structures at
resolutions in the range 1.9 - 1.7Å suggests that the refinement procedure is
capable of successfully moving both main-chain and side-chain atoms through
distances of 1.0Å.

Several of our colleagues have contributed to the development of the re-
finement package by applying it to their own problems and suggesting mod-
ifications and improvements; in particular, we thank Drs M. A. Holmes and
M. F. Schmid. Dr Holmes also suggested ‘TNT’ as the name for the pack-
age. We also thank Dr N. Isaacs for providing detailed information on the
Lifchitz modification of the Agarwal fast Fourier transform algorithm. The
work was supported in part by grants from the national Institutes of Health
(GM 20066; GM 21967; GM 35114), the National Science Foundation (DMB
8611084) and the Murdock Charitable Trust.

A Efficient calculation of gradients by means

of the fast Fourier transform algorithm

By Dale E. Tronrud

A.1 Definitions

The following symbols are used in both the main paper and the Appendices.
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p The vector consisting of all refinable parameters in the model.
pi The vector of all parameters of atom i.
x The vector of all positional parameters in the model.
xi The vector of the positional parameters of atom i.
xi, yi, zi The coordinates of atom i.
Bi The thermal factor for atom i.
Oi The occupancy of atom i.
fi The atomic scattering factor for atom i.
s The vector (h, k, l); s = sin θ/λ.
Qo(j) The observed value for observation j.
Qc(j, p) The value calculated for observation j from the parameters p.
W (j) A weighting factor for observation j.
Fo(s) The observed structure factor for reflection s.
Fc(s, p) The structure factor for reflection s calculated from the parameter p.
T A Fourier transform.
T−1 An inverse Fourier transform.
∗ A convolution.
( ∗
xi

) The value of the convolution evaluated at xi.

A.2 Lifchitz variation of the FFT algorithm

To refine a structural model against crystallographic data both the function
(8) and its gradient (9) must be evaluated.

M(p) =
∑
s

W (s)[k|Fo(s)| − |Fc(s,p)|]2 (8)

dM(p)/dp = −2
∑
s

W (s)[k|Fo(s)| − |Fc(s,p)|] d|Fc(s, p)|/dp. (9)

Because the evaluation of the gradient involves a sum over all reflections for
each parameter of the model, the calculation would be very time consuming
if performed as in (9).

Agarwal (1978) showed that (9) can be expressed as follows:

∂M(p)/∂xi = T−1{2W (s)[k|Fo(s)| − |Fc(s,p)|] exp[iϕc(s, p)](2πih)gi(s)}
(10)

∂M(p)/∂yi = T−1{2W (s)[k|Fo(s)| − |Fc(s,p)|] exp[iϕc(s, p)](2πik)gi(s)}
(11)
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∂M(p)/∂zi = T−1{2W (s)[k|Fo(s)| − |Fc(s,p)|] exp[iϕc(s, p)](2πil)gi(s)}
(12)

∂M(p)/∂Bi = T−1{−2W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)](−s2/4)gi(s)}
(13)

where
gi(s) = Oifi(s) exp(Bis

2/4). (14)

This formulation requires a Fourier transform for each parameter and is
also impractical. However, Agarwal separated the portion of (10)-(13) that
depend on the atom (subscript i) from the rest of the factors and applied the
convolution theorem to arrive at the following equations:

∂M(p)/∂xi = T−1{W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)](2πih)}( ∗
xi

)T−1[2gi(s)]

(15)

∂M(p)/∂yi = T−1{W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)](2πik)}( ∗
xi

)T−1[2gi(s)]

(16)

∂M(p)/∂zi = T−1{W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)](2πil)}( ∗
xi

)T−1[2gi(s)]

(17)

∂M(p)/∂Bi = T−1{W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)](−s2/4)}( ∗
xi

)T−1[−2gi(s)].

(18)
If the atomic scattering factor is modeled as a sum of Gaussians the second

Fourier transform can be calculated analytically. For a given model, the first
transform in each of (15)-(18) can be calculated with the FFT algorithm. In
the form given in (15)-(18), it is necessary to perform three Fourier transform
to determine the positional derivatives.

Lifchits (see Agarwal, Lifchitz & Dodson, 1981) has pointed out that
the gradient can be calculate more efficiently by factoring (10)-(13) so that
the first Fourier transform is the same in all the equations. The refactoring
results in the following equations:

∂M(p)/∂xi = T−1{W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)]}( ∗
xi

)T−1[2(2πih)gi(s)]

(19)

∂M(p)/∂yi = T−1{W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)]}( ∗
xi

)T−1[2(2πik)gi(s)]

(20)
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∂M(p)/∂zi = T−1{W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)]}( ∗
xi

)T−1[2(2πil)gi(s)]

(21)

∂M(p)/∂Bi = T−1{W (s)[k|Fo(s)|−|Fc(s,p)|] exp[iϕc(s, p)]}( ∗
xi

)T−1[−2(−s2/4)gi(s)].

(22)
When these equations are used to calculate the gradient of M(p), only a
single FFT is required. If one remembers that gi(s) is simply a sum of
Gaussians, the Fourier transforms on the right can be determined analytically
by using the following rules:

T−1[exp(−Bs2)] = (π/B)3/2 exp(−π/B r2) (23)

T−1[2πihF (s)] = −∂T−1[F (s)]/∂x (24)

T−1[s2 exp(−Bs2)] = (π/B)3/2 exp(−π2r2/B) [3− 2(π2/B)r2] (25)

A.3 The reduction of series termination errors

The calculation of the convolutions in (19)-(22) involves sampling each of the
functions at discrete points, multiplying the values point by point, and sum-
ming all the products. The sampling interval required to represent a function
with a given accuracy depends on the magnitude of the high-resolution com-
ponents of that function. There is no problem determining the sampling
interval for the function on the left of the convolution because it contains no
components of resolution higher than the measured data. However, the func-
tion on the extreme right-hand side of (19)-(22) are not of limited resolution
and therefore, at least in principle, must be sampled on a very find grid. This
problem existed in the original equations (15)-(18) but is much more seri-
ous with the new form of (19)-(22) because the high-resolution components
are enhanced by the inclusion of the crystallographic indices (h, k, l). This
problem is most severe in the calculation of the temperature-factor deriva-
tives (22) because of the s2 factor. A mechanism to allow these functions
to be calculated using the somewhat coarser grid has been devised by rec-
ognizing that the errors introduced by a coarse grid are fundamentally the
same as those encountered in the calculation of structure factors using the
FFT method (Ten Eyck, 1977). The solution involves ‘smearing’ or ‘blur-
ring’ the function of interest so that it is sampled by a larger number of grid
points. The ‘smearing’ must be compensated elsewhere in the calculation.
In this case the compensation is achieved by ‘sharpening’ the difference map.
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This can be done without introducing additional errors because no new high-
resolution terms are introduced into the difference map. The final equations,
as used in the program ADERIV, are

∂M(p)

∂xi

= T−1{W (s)[k|Fo(s)| − |Fc(s,p)|] exp[iϕc(s, p)] exp(B0s2/4)}

( ∗
xi

) T−1[2(2πih)gi(s) exp(−B0s2/4)] (26)

∂M(p)

∂yi

= T−1{W (s)[k|Fo(s)| − |Fc(s,p)|] exp[iϕc(s, p)] exp(B0s2/4)}

( ∗
xi

) T−1[2(2πik)gi(s) exp(−B0s2/4)] (27)

∂M(p)

∂zi

= T−1{W (s)[k|Fo(s)| − |Fc(s,p)|] exp[iϕc(s, p)] exp(B0s2/4)}

( ∗
xi

) T−1[2(2πil)gi(s) exp(−B0s2/4)] (28)

∂M(p)

∂Bi

= T−1{W (s)[k|Fo(s)| − |Fc(s,p)|] exp[iϕc(s, p)] exp(B0s2/4)}

( ∗
xi

) T−1[−2(−s2/4)gi(s) exp(−B0s2/4)] (29)

A.4 Generalized uses of the algorithm

What was not clear in Agarwal’s original paper was that this computational
short cut can be used in many cases other than the evaluation of (9). If the
derivation is carried out for the general case we discover that the identity
(30)-(33) holds whenever E(s) is a symmetric function.∑

s

E(s)∂|Fc(s,p)|/∂xi = T−1{E(s) exp[iϕc(s, p)]}

( ∗
xi

) T−1[(2πih)gi(s)] (30)

∑
s

E(s)∂|Fc(s,p)|/∂yi = T−1{E(s) exp[iϕc(s, p)]}

( ∗
xi

) T−1[(2πik)gi(s)] (31)

24



∑
s

E(s)∂|Fc(s,p)|/∂zi = T−1{E(s) exp[iϕc(s, p)]}

( ∗
xi

) T−1[(2πil)gi(s)] (32)

∑
s

E(s)∂|Fc(s,p)|/∂Bi = T−1{E(s) exp[iϕc(s, p)]}

( ∗
xi

) T−1[(−s2/4)gi(s)] (33)

We can use (30)-(33) to speed up the calculation of the gradient of almost
any function involving structure factors.

Let us develop an example. Suppose that we wish to minimize not the
usual function of the X-ray data (8), but the negative of the correlation
coefficient r(p) between the observed and calculated structure factors, which
can be cast as in (35), where the bar indicates the mean value.

r′(p) = −r(p) (34)

= [|Fo(s)| |Fc(s,p)| − Fo(s)| |Fc(s,p)|]
× {[|Fo(s)|2 − |Fo(s)|2][|Fc(s,p)|2 − |Fc(s,p)|2]}−1/2. (35)

The gradient is given by

dr′(p)

dp
=

r′(p)

n
[|Fo(s)|

∑
s

d|Fc(s,p)|/dp

−
∑
s

|Fo(s)|d|Fc(s,p)|/dp]

× [|Fo(s)||Fc(s,p)| − |Fo(s)||Fc(s,p)|]−1

− {[
∑
s

|Fc(s,p)|d|Fc(s,p)|/dp

− |Fc(s,p)|
∑
s

d|Fc(s,p)|/dp]

× [|Fc(s,p)|2 − |Fc(s,p)|2]−1}, (36)

where n is the number of structure factors included. To calculate this gradient
we need a number of means and three complicated summations, (37), (38)
and (39): ∑

s

d|Fc(s,p)|/dp (37)
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∑
s

|Fo(s)|d|Fc(s,p)|/dp (38)

∑
s

|Fc(s,p)|d|Fc(s,p)|/dp (39)

From the generalized derivation we can see that these three quantities can be
calculated from the same convolution, and, in fact, with the same program
as the original calculation but substituting the three transformations given
in (40)-(42):

T−1{exp[iϕc(s,p)]} (40)

T−1{|Fo(s)| exp[iϕc(s,p)]} (41)

T−1{|Fc(s,p)| exp[iϕc(s,p)]} (42)

Therefore with three FFT’s we can calculate the required gradient of the
correlation coefficient.

This particular function has not been implemented in TNT. To do so
would only require the creation of the code to calculate the means, the co-
efficients for the transformations, and a program which would combine the
means with the results of the convolutions to produce the final gradient. To
perform refinement a program would have to be written to calculate r′ for
any given model. None of these programming tasks is difficult.

B Evaluation of the gradients of the terms

necessary for the implementation of stere-

ochemical restraints

By Dale E. Tronrud and Lynn F. Ten Eyck

B.1 Introduction

In this Appendix we present the equations for the gradients of the stereo-
chemical terms. Most of these are derived by straightforward algebra and no
details will be given. Because of the assumptions used in the case of planarity
restraints these equations are derived explicitly.
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The stereochemistry terms are of the following form [cf. equation (2) in
the main text]:

M(p) =
∑

b

W (b)[Qo(b)−Qc(b,p)]2 (43)

The gradients are of the form

∂M(p)/∂xi = −2
∑

b

W (b)[Qo(b)−Qc(b,p)] ∂Qc(b,p)/∂xi. (44)

Only the portion of (44) unique to each type of restraint (i.e. the derivative
of the calculated quantity with respect to the parameters of the model) will
be listed in each of the following sections. In each section the coordinates
are assumed to be expressed in an orthogonal system.

B.2 Bond lengths

For bond lengths, Qc(s) is the distance between two atoms. Call these two
atoms i and j.

∂Qc(x)/∂xi = [1/Qc(x)](xi − xj)

∂Qc(x)/∂xj = [−1/Qc(x)](xi − xj)

∂Qc(x)/∂yi = [1/Qc(x)](yi − yj) (45)

∂Qc(x)/∂yj = [−1/Qc(x)](yi − yj)

∂Qc(x)/∂zi = [1/Qc(x)](zi − zj)

∂Qc(x)/∂zj = [−1/Qc(x)](zi − zj)

B.3 Bond angles

For bond angles, Qc(x) is the angle defined by three atoms, labeled i, j, k,
with j being the central atom.

Let a be the vector from atom j to atom i, b the vector from atom k to
atom j and c the vector from atom i to atom k. Then

Qc(x) = cos−1[a2 + b2 − c2/2ab]. (46)

[Note: In Fortran the argument of the function ACOS is in radians. If Qc(s)
is to be in degrees a conversion factor must be included.]

∂Qc(x)

∂xi

=
−1

2ab| sin Qc(x)|

{[
1− a

b
cos Qc(x)

]
∂a2

∂xi

(47)
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+
[
1− a

b
cos Qc(x)

]
∂b2

∂xi

− ∂c2

∂xi

}
, (48)

∂a2/∂iw = 2(iw − jw) ∂b2/∂iw = 0
∂c2/∂iw = −2(kw − iw) ∂a2/∂jw = −2(iw − jw)
∂b2/∂jw = 2(jw − kw) ∂c2/∂jw = 0
∂a2/∂kw = 0 ∂b2/∂kw = −2(jw − kw)
∂c2/∂kw = 2(kw − iw)

(49)

where:
i1 = xi j1 = xj k1 = xk

i2 = yi j2 = yj k2 = yk

i3 = zi j3 = zj k3 = zk

(50)

B.4 Torsion angles

For torsion angles, Qc(x) is the angle defined by the four atoms labeled i, j,
k, l. The quantity is the angle between the normal to the plane defined by
atoms i, j, k and the normal to the plane defined by atoms j, k, l.

Let a be the vector from atom j to atom i, s the vector from atom j to
atom k and b the vector from atom k to atom l. Also let r = s × a and
q = s× b where r is the normal to the plane containing atoms i, j, k and q
is the normal to the plane containing atoms j, k, l.

Qc(x) = cos−1(r · q/rq). (51)

[Note: In Fortran the argument of the function ACOS is in radians. If Qc(x)
is to be in degrees a conversion factor must be included.]

Let
e = [−1/rq| sin Qc(x)|][q− cos Qc(x)(q/r)r] (52)

and
f = [−1/rq| sin Qc(x)|][r− cos Qc(x)(r/q)q] (53)

Then

∂Qc(s)/∂xi = e× s (54)

∂Qc(s)/∂xj = −∂Qc(s)/∂xi + e× a + f × b (55)

∂Qc(s)/∂xk = −∂Qc(s)/∂xl − e× a− f × b (56)

∂Qc(s)/∂xl = f × s (57)
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B.5 Planarity

For planarity, Qc(x) is defined as the root mean square (r.m.s.) deviation of
the atoms from the best-fit plane.

Let N be the number of atoms in the plane and x the center of mass of
the atoms. Consider

Q =


∑

i(xi − x)(xi − x)
∑

i(xi − x)(yi − y)
∑

i(xi − x)(zi − z)∑
i(yi − y)(xi − x)

∑
i(yi − y)(yi − y)

∑
i(yi − y)(zi − z)∑

i(zi − z)(xi − x)
∑

i(zi − z)(yi − y)
∑

i(zi − z)(zi − z)

 (58)

Q is the moments matrix for the atoms of the plane. The eigenvectors of
Q point along the directions of the principal axes of rotation of this group of
atoms. The eigenvalues of Q are inversely related to the moments of inertia
of rotation about the axis defined by the corresponding eigenvector. The axis
of rotation with the largest moment (smallest eigenvector) is defined as the
normal to the best plane for these atoms.

Let u be the smallest eigenvalue of Q, n the eigenvector of Q correspond-
ing to u and m (= n/n) be the normalized eigenvector. Then the r.m.s.
deviation of the atoms from planarity is

Qc(x) =

{∑
i

[m · (xi − x)]2/N

}1/2

(59)

∂Qc(x)/∂xi = [1/NQc(x)]

∑
j

[m · (xj − x)]

× [∂m/∂xj · (xj − x)]

+ [1− (1/N)][m · (xj − x)]m} (60)

∂m/∂xi = (1/n)(∂n/∂xi)− (n/n3) ∧ (n · ∂n/∂xi) (61)

where ∧ is the outer product. It is defined, when a and b are column vectors,
as a ∧ b = a · bt.

The calculation of the derivative of the eigenvector with respect to the
position of an atom is difficult because eigenvectors are usually determined
algorithmically. There is no general equation which expresses the components
of the eigenvector of an matrix as a function of the components of that matrix.
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However, if one assumes that the off-diagonal elements of Q are non-zero one
can derive an equation for the eigenvector:

n1 = Q31Q32 + Q21(u−Q33)

n2 = Q31Q31 + (u−Q33)(u−Q11) (62)

n3 = Q31Q21 + Q32(u−Q11)

(63)

The derivatives of n1, n2 and n3 are simple to derive in terms of the derivatives
of the elements of Q. Because of the complexity of its derivative we have
made the assumption that the eigenvalue remains constant during refinement.

∂Q/∂xi = (1− 1/N)

 2(xi − x) (yi − y) (zi − z)
(yi − y) 0 0
(zi − z) 0 0

 (64)

∂Q/∂yi = (1− 1/N)

 0 (xi − x) 0
(xi − x) 2(yi − y) (zi − z)

0 (zi − z) 0

 (65)

∂Q/∂zi = (1− 1/N)

 0 0 (xi − x)
0 0 (yi − y)

(xi − x) (yi − y) 2(zi − z)

 (66)

The assumption that the off-diagonal elements of Q are non-zero makes
the gradient calculation sensitive to the orientation of the plane. In the
program which performs these calculations the problems which might arise
are ignored. It is presumed that if by chance the plane lies in a special
orientation the movement resulting from the first cycle of refinement will
cause it to be displaced and subsequent refinement will function normally.
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Warme, P. K., Gō, W. & Scheraga, H. A. (1972). J. Comput. Phys.
9, 303–317.

32



Watenpaugh, K. D., Sieker, L. C., Herriott, J. R. & Jensen, L. H.
(1973). Acta Cryst. B29, 943–956.

Wlodawer, A. & Hendrickson, W. A. (1982). Acta Cryst. A38, 239–
247.

33


